
1 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

 PromptLock

Ransomware
Cybanetix

V1.0 27/06/2025

Cybanetix Limited

cybanetix.com

Registered at:

The Coade

Level 9

98 Vauxhall Walk

London

SE11 5EL

Company Registration: 10558582

VAT Number: GB 262502430

2 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

Table of Contents

Timeline of Discovery and Development .. 3

Technical Breakdown of PromptLock ... 4

Associated Threat Actors and Attribution ... 7

Tactics, Techniques, and Procedures (TTPs) – MITRE ATT&CK Mapping 8

Indicators of Compromise (IOCs) .. 13

Detection and Mitigation Strategies ... 16

Detection Strategies ... 16

Mitigation Strategies .. 18

Conclusion .. 20

3 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

PromptLock Ransomware Technical
Analysis | OPTIX Briefing

Timeline of Discovery and Development
• July 2025 – Emergence of AI-Assisted Malware: The concept of using AI in

malware gained traction when CERT-UA (Ukraine) reported LameHug, an LLM-
powered malware used by Russian APT28, which generated malicious Windows
commands on the fly. This demonstrated that nation-state actors were
experimenting with AI-driven attacks prior to PromptLock’s appearance.

• August 2025 – PromptLock Discovered by ESET: ESET researchers hunting
through VirusTotal uncovered a new ransomware sample that didn’t match
known malware signatures. On August 27, 2025, ESET announced this find as
PromptLock, heralded as the first “AI-powered ransomware” observed. Early
variants of PromptLock (both Windows and Linux Golang binaries) had been
uploaded to VirusTotal by a U.S.-based user. ESET noted that it had not been
seen in any in-the-wild attacks, implying it was likely a proof-of-concept or
developmental malware.

• Late August 2025 – Public Disclosure: ESET’s public report highlighted
PromptLock’s novel use of a generative AI model to autonomously decide
whether to exfiltrate or encrypt files during an infection. The news raised
industry-wide concern that a “turning point” had been reached where AI could
supercharge ransomware capabilities. Media coverage (e.g. DarkReading and
BleepingComputer) amplified the alert, though experts noted the
implementation appeared unfinished and not yet actively deployed by criminals.

• Early September 2025 – Academic Origins Revealed: On September 5, 2025,
researchers from NYU’s Tandon School of Engineering came forward to claim
authorship of PromptLock as part of an academic project dubbed “Ransomware
3.0”. They explained that PromptLock’s code was an experimental prototype
uploaded to VirusTotal during testing, unbeknownst to ESET. The academic
team’s goal was to illustrate the potential harms of AI-orchestrated malware in a
closed-loop attack without human intervention. ESET updated its reports to
acknowledge the malware’s origin as a proof-of-concept from this research,
while affirming that PromptLock “represents the first known case of AI-powered
ransomware”.

• Current Status: As of late 2025, PromptLock remains non-attributed to any
criminal group or APT and has not been seen in active cyberattacks. It is best

4 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

understood as a concept demonstration. However, its emergence is a warning
sign: it closely followed real-world LLM-based malware (LameHug by APT28) and
exemplifies the rising trend of threat actors exploring AI for more adaptive, cross-
platform attacks. Security experts anticipate that PromptLock’s capabilities
could be adopted or refined by malicious actors in the near future, marking a
new era of “ransomware 3.0” threats.

Technical Breakdown of PromptLock
PromptLock is a ransomware toolkit with an unprecedented architecture: it offloads
much of its malicious logic to an AI language model rather than relying on solely pre-
written code. Below is a detailed breakdown of how PromptLock functions:

• Instead of embedding fixed ransomware routines, PromptLock contains hard-
coded natural-language prompts that it feeds to a generative large language
model (LLM) at runtime. The malware leverages OpenAI’s gpt-oss:20b model (an
open-source 20-billion-parameter language model) via the Ollama API to
produce malicious Lua scripts on the fly. In essence, PromptLock conducts a
prompt-injection attack on the LLM: it instructs the AI to act as a code generator
and produce specific attack scripts (written in Lua) which PromptLock then
executes in memory.

• PromptLock’s wrapper malware is written in Go, allowing compilation for
Windows, Linux, and macOS systems from a single codebase. ESET discovered
both Windows (WinGo/Filecoder.PromptLock.A) and Linux
(Linux/Filecoder.PromptLock.A) variants on VirusTotal. The Golang binary
includes the logic to interface with the LLM and carry out the AI’s outputs. This
cross-platform design dramatically broadens the potential attack surface, as the
same malware build can adapt to multiple operating systems.

• Once executed on a victim machine, PromptLock uses AI-generated Lua scripts
to scan and enumerate the local filesystem in search of valuable or sensitive
data. One of the static prompts instructs the LLM to generate Lua code that
recursively searches files and directories, looking for indicators of sensitive
content (e.g. keywords, file types) and logs matching filenames to a list (e.g.,
target_file_list.log). This represents the Reconnaissance/Discovery phase of the
attack: the malware dynamically maps out target data without needing a pre-
programmed file list. Notably, the LLM’s reasoning capabilities allow it to decide
which files are likely important (for example, documents with financial terms,
databases, source code, etc.) – a task traditionally requiring human planning.

• If high-value files are found, PromptLock can turn into a data thief. Based on
predefined prompt logic, the AI autonomously decides whether to exfiltrate or

5 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

encrypt each file it finds. For files flagged for exfiltration, the malware’s next step
is to have the LLM generate a script to upload those files to a remote server. In
the prototype, the Lua payload uses the system’s command-line (via curl
commands) to send each targeted file to an attacker-controlled server address
with an API key. This means PromptLock can perform data theft (double
extortion) by exfiltrating sensitive information before or instead of encryption.
The exfiltration mechanism is executed locally (the malware calling curl for each
file), so it does not rely on any particular C2 protocol beyond normal HTTPS
outbound traffic.

• For files designated for ransom, PromptLock instructs the LLM to generate an
encryption routine. Uniquely, it uses the SPECK 128-bit cipher (a lightweight
block cipher) implemented in Lua. The choice of SPECK is unusual for
ransomware (more commonly AES or ChaCha20 are used) and is likely due to its
simplicity and small code size, making it easier for an AI to implement on the fly.
The AI-generated script reads each target file and encrypts it in place using the
SPECK algorithm, leveraging a provided key. The encryption is fast and cross-
platform (pure Lua code), albeit cryptographically weaker than modern
standards. This step corresponds to the Impact/Encryption phase of the attack –
PromptLock can lock the victim’s data to demand a ransom.

• PromptLock even uses the LLM to compose ransom demand messages. The
malware’s prompt includes instructions to the model to act as a “cybersecurity
expert” and draft a plausible extortion note for the victim. The AI can incorporate
specific details such as the filenames of stolen data or the victim’s organization
name into the note, making it personalized and more convincing. Notably, the
ransom note generated in the discovered sample contained a hard-coded
Bitcoin address for payment – specifically, the first Bitcoin address ever created
(associated with Satoshi Nakamoto) was used as a placeholder. This infamous
address was likely inserted as an Easter egg or to signal the prototype status (no
real ransom intended). The ransom notes are saved to a file (e.g., note.txt) on the
victim system. In a real attack, this note would instruct the victim to pay a
ransom (though in PromptLock’s case, any demanded payment would have gone
to the dummy Satoshi address).

• PromptLock’s code also hints at a possible data destruction feature, though it
was inactive in the samples we have handled. ESET observed that the malware
includes a “destructive function” which was not enabled. The academic authors
describe that after exfiltration and encryption, the malware could optionally wipe
the files – the AI can generate a script to securely overwrite and delete each file
listed in target_file_list.log. This would function as a “kill switch” or punitive
action if the ransom isn’t paid (or simply to complicate recovery). In the

6 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

PromptLock proof-of-concept, the data destruction phase was likely disabled to
avoid accidental harm during testing. However, the presence of this code
underscores how easily an AI-driven malware could adapt its payload to include
sabotage (MITRE T1485).

• One of PromptLock’s defining features is its use of a locally accessible AI model.
The malware does not query a cloud AI service during execution; instead, it
leverages the Ollama platform to run the LLM in a contained environment. In the
prototype, the OpenAI gpt-oss:20b model was accessed through an API, with the
model’s outputs “served directly to the infected device.”. This was achieved by
running an instance of the LLM (20-billion parameter model) on a server and
having the malware connect to it over the network. To avoid downloading the
large model onto each victim machine, the attackers can tunnel the victim’s
connection to a remote server running the LLM. In practice, the PromptLock
binary establishes a proxy or SSH tunnel from the compromised host out to the
attacker’s LLM server. The model (hosted on the attacker side) then receives the
prompts and returns Lua code to the malware in real time. This design effectively
makes the AI model part of the command-and-control (C2) infrastructure: the
malware queries an external AI service for instructions (scripts), akin to receiving
commands from a C2 server. Because the LLM is self-hosted by the attacker and
accessed via API calls, network defenders might see unusual traffic to an
unknown server or on an uncommon port (Ollama’s API runs on port 11434 by
default).

• The PromptLock samples analyzed did not exhibit persistence mechanisms –
there was no code to survive reboot or maintain long-term foothold. It appears
the malware was designed to run as a one-shot payload (perform recon,
exfiltrate/encrypt data, drop a note, optionally destroy data, then exit). This is
consistent with its proof-of-concept nature and the fact that it was not used in a
campaign that required stealth or longevity. In an operational scenario, attackers
could easily add common persistence techniques (e.g. registry Run keys,
scheduled tasks, launch agents) to PromptLock. The absence of persistence in
the discovered samples suggests the authors were focused on demonstrating
the LLM-driven attack loop rather than stealth or resilience. Defense note: The
lack of persistence actually makes the malware easier to contain – if detected
and removed, it will not reboot itself – but a more sophisticated variant could be
persistently lurking if combined with typical droppers or loaders.

• A core implication of PromptLock’s design is that the malware’s behavior can
change with every execution. The Lua scripts generated by the AI will not be
identical on each run – the LLM might produce functionally similar code with
different syntax, or handle different files depending on context. This polymorphic

7 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

nature means traditional Indicators of Compromise (IoCs) like specific file
hashes or static strings in memory are far less useful, since the malicious script
content varies between infections. As ESET noted, “indicators of compromise
may vary between executions” because the AI-generated code adapts to the
environment. In effect, PromptLock behaves somewhat like fileless malware or a
living-off-the-land script: the actual malicious logic is synthesized at runtime,
making signature-based detection extremely difficult. However, the PromptLock
binary itself (the Golang container and its embedded prompts) remains constant
across runs. This gives defenders a single static artifact to focus on (see
Detection section below). The use of an AI model also helps PromptLock evade
certain defenses by outsourcing complex logic to the LLM: for example, there is
no large encryption routine in the binary to analyze – it’s generated on the fly –
potentially confusing static analysis. Additionally, by using an encrypted tunnel
to communicate with its AI model, PromptLock can hide its C2 communications
within seemingly benign traffic (e.g. an HTTPS connection to a non-domain
endpoint).

Associated Threat Actors and Attribution
PromptLock has not been attributed to any known cybercriminal or APT group. In fact, it
was created by academic researchers as a demonstration, rather than by a threat actor.
ESET initially found the code uploaded from the U.S., but there was no indication it had
been used in attacks or linked to an existing hacking group. After the NYU team claimed
credit, it became clear PromptLock was essentially an academic proof-of-concept
(PoC), not a weapon actively deployed by criminals.

• The multi-platform ransomware functionality is reminiscent of advanced
ransomware groups, but to date no ransomware gang has been publicly tied to
PromptLock. It’s conceivable that organized cybercriminal groups (ransomware-
as-a-service gangs) will draw inspiration from PromptLock’s design in the future,
given its potential to evade defenses.

• Notably, a month before PromptLock’s disclosure, APT28 (a.k.a. Fancy Bear) – a
Russian state-backed group – deployed an LLM-powered malware named
“LameHug” against Ukrainian targets. LameHug used an AI model (via the
HuggingFace API) to generate malicious Windows shell commands dynamically,
and it was delivered through phishing emails to government agencies. This real-
world attack by an APT group underscores that nation-state adversaries are
already experimenting with AI to augment malware. While LameHug and
PromptLock were developed independently, they both validate the feasibility of
AI-orchestrated cyberattacks. (CERT-UA attributed LameHug to APT28 with
medium confidence.)

8 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

While PromptLock itself is not known to be in the hands of cybercriminals or spy
agencies at this time. However, the techniques it showcases are already surfacing in
related forms. Security researchers warn that both financially motivated gangs and APT
actors are likely to incorporate AI/LLM components into their malware in the coming
months and years. PromptLock has effectively given a blueprint of “what’s possible,”
and it has raised alarms within the security community about the next generation of
threats.

Tactics, Techniques, and Procedures (TTPs) – MITRE
ATT&CK Mapping
PromptLock’s behavior spans multiple phases of the attack lifecycle, enabled by its AI-
driven adaptability. The key TTPs observed or inferred in PromptLock (and their
corresponding MITRE ATT&CK techniques) include:

• Initial Access (TA0001) – Delivery & Execution: Since PromptLock was not
deployed in the wild, its initial access vector was not observed. In concept, the
malware could be delivered via typical ransomware vectors. For example,
Spearphishing Attachment (T1566.001) is a likely method (similar AI malware
LameHug arrived via phishing emails with malicious attachments). Another
possibility is Supply Chain or Trojaned Software (T1195), as the academic
authors noted one could hide such AI prompts in software that promises LLM
features. User Execution (T1204) is required – the victim must run the
PromptLock binary (e.g. by opening a fake installer or document) to trigger the
attack.

• Execution (TA0002) – Dynamic Scripting: PromptLock executes its malicious
behavior via Command and Scripting Interpreter (T1059). Specifically, it
generates Lua scripts in memory and runs them to perform its tasks. This is akin
to fileless script execution orchestrated by the malware. The Golang dropper
itself calls the Ollama API and then likely invokes a Lua engine or system
commands to execute the returned Lua code. Each script run is tailored to the
victim’s system (AI-driven), making PromptLock’s execution flow highly dynamic.
Additionally, the malware spawning system commands (like curl for exfiltration)
is part of its execution technique (overlaps with OS Command Execution –
T1059.003 using the shell via AI-generated instructions).

• Persistence (TA0003) – No Persistence: PromptLock did not implement explicit
persistence (e.g., no autoruns, services, or startup items observed). In a real
scenario, attackers could add Boot or Logon Autostart (T1547) techniques such
as Registry Run keys (on Windows) or Launch Daemons (on macOS) to ensure

9 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

the ransomware persists. The lack of persistence in PromptLock’s sample
indicates the malware runs in-memory during one session, which can limit its
footprint but also means if the system reboots before it finishes, the malware
would not continue running.

• Privilege Escalation (TA0004) – No Elevation: The available information doesn’t
indicate that PromptLock performs privilege escalation. It likely runs with user-
level permissions. If higher privileges were needed (e.g., to access certain files or
terminate security software), an attacker might need to include an exploit or
prompt the AI to attempt some privilege escalation (though that was not part of
the PoC). In current form, PromptLock operates at whatever privilege level it
starts with; thus, if executed by a user, it might only impact user-accessible files.
(Future AI malware could integrate privilege escalation via LLM – e.g., having the
AI generate code to exploit known vulnerabilities – but this was beyond
PromptLock’s demonstrated scope.)

• Defense Evasion (TA0005) – Obfuscation & Polymorphism: PromptLock largely
evades defenses through Obfuscated Files or Information (T1027) – not by
packing or encryption, but by virtue of its AI-driven polymorphism. The actual
malicious payload (Lua code) exists only ephemerally and can be different on
each run. This defeats traditional file-signature or hash-based detection.
Additionally, because the heavy-lifting is done by the LLM, the static binary may
look relatively benign (no obvious ransomware loops or large suspicious
imports). The use of common tooling (like curl) and a legitimate model API can
help it blend in. One could also consider Non-Standard Interpretation (T1059) as
it uses Lua – a scripting language that is less commonly monitored on endpoints.
The variability of IoCs and the indirect way code is executed pose a significant
evasion challenge for static analysis and even some behavior-based detection.

• Discovery (TA0007) – System and File Discovery: PromptLock performs extensive
File and Directory Discovery (T1083) and possibly System Information Discovery
(T1082). The AI-generated reconnaissance script traverses the filesystem,
identifies files of interest (documents, databases, etc.), and may glean system
info (like user directories, OS type to tailor commands). Essentially, the malware
conducts automated recon to understand its environment and choose actions
(exfiltrate or encrypt) based on what it finds. This is a step beyond typical
ransomware, which often encrypts everything blindly; PromptLock attempts a
targeted approach.

• Collection (TA0009) – Data Staging: After discovering sensitive files, PromptLock
collects them for exfiltration. It uses Data from Local System (T1005) – reading
the contents of files deemed valuable. The files to steal are listed in
target_file_list.log as a staging mechanism. Then, using an AI-scripted routine, it

10 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

prepares these files for upload (ensuring full file paths, etc.). This corresponds to
Data Staging (T1074), where the malware organizes data prior to exfiltration (in
this case, creating a list and then uploading each file). PromptLock’s design
shows the AI can make decisions about which files to collect, adding a layer of
“intelligence” to the Collection phase that is typically static in other malware.

• Exfiltration (TA0010) – Automated Exfiltration & C2: For data exfiltration,
PromptLock utilizes Exfiltration Over C2 Channel (T1041) or more specifically
Automated Exfiltration (T1020). The AI-generated Lua code invokes outbound
network calls (via curl) to send files to an attacker-controlled server. Because the
malware already has a network channel open to the LLM server (its proxy to the
Ollama API), it could use that channel for exfiltration or a separate HTTPS POST
to a hardcoded endpoint. The academic case study indicates the prompt
included concrete server details for file uploads. In practice, these could be
attacker infrastructure (e.g., a cloud storage or web server) acting as the
C2/exfiltration point. PromptLock likely uses standard ports (80/443 via curl) for
exfiltration traffic, which helps it blend with normal traffic. The data exfil is
scripted to use full file paths and an API key, ensuring the attacker can
authenticate and receive the files properly.

• Command and Control (TA0011) – LLM as C2: PromptLock blurs the line between
payload and C2. Its primary “command” mechanism is the LLM. We can map
this to Application Layer Protocol – Web APIs (T1071.001) since it communicates
with the AI model using HTTP/JSON calls via the Ollama REST API. The model
essentially sends back commands (in the form of Lua code). Unlike typical
malware that reaches out to a C2 for instructions, PromptLock reaches out to an
AI service. When the LLM is hosted remotely, this traffic can be considered C2
traffic. The use of a localhost or remote port 11434 (default for Ollama) is notable
– if the attacker’s LLM is remote, the malware might connect to that port through
a tunnel. This is an unusual C2 method that might be classified as Non-Standard
Port (T1571) or even Domain Fronting or Payload (if the AI service were on a cloud
domain). Additionally, after initial infection, PromptLock no longer requires
human operator input – the LLM orchestrator takes over, autonomously driving
the attack lifecycle. This closed-loop operation is novel: the “C2” (the AI) not only
delivers static commands but can adaptively generate new ones based on the
environment (which falls under Automated Workflow that isn’t yet a defined
ATT&CK technique, but is an emerging concept in autonomous malware).

• Impact (TA0040) – Data Encryption & Destruction: PromptLock squarely targets
data integrity and availability in the Impact phase. It performs Data Encrypted for
Impact (T1486) by encrypting files using SPECK-128 via the AI-generated routine.
This renders the victim’s data inaccessible without the decryption key (which the

11 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

attacker presumably holds externally). The inclusion of a ransom note and
payment instructions is characteristic of ransomware’s Impact: Indicator of
Compromise for this is the note.txt file and the extension/marker of encrypted
files (PromptLock might not change filenames but encrypted content and the
note are giveaways). Moreover, although not active in the discovered sample,
PromptLock was capable of Data Destruction (T1485) – wiping files after
exfiltration. Had this feature been enabled, it would permanently destroy data
(beyond just encryption), increasing the impact on the victim (and removing the
attacker’s leverage if ransom was not paid, which suggests it might be used as a
punitive action or if the goal is pure sabotage). The combination of theft and
encryption aligns with double-extortion ransomware tactics, and the potential
destruction adds a triple extortion or nation-state sabotage element.

• Another impact aspect is Financial Extortion (T1486 – Impact: Resource
Hijacking/Threat) as the attacker demands a ransom in cryptocurrency.
PromptLock’s AI writes a personalized ransom note threatening to expose stolen
data and keep files locked. This psychological impact (pressure via personalized
threats) is a tactic to increase the likelihood of payment. While MITRE
categorizes the encryption itself under T1486, the act of extortion and
threatening release of data is part of the modern ransomware playbook.

The table below maps PromptLock’s key behaviors to corresponding MITRE ATT&CK
techniques:

Tactic Technique PromptLock Behavior

Initial
Access

T1566.001 – Spearphishing
Attachment (likely)

(Not observed; conceptually delivered
via phishing emails similar to
LameHug or trojanized apps)

Execution T1059 – Command and
Scripting Interpreter

Runs AI-generated Lua scripts in
memory to execute payload

T1059.003 – Windows
Command Shell

Uses shell commands (e.g., curl)
generated by LLM for exfiltration

Persistence — None observed — No persistence in PoC (no autorun).
Could be added in real attacks (T1547,
etc.)

Discovery T1083 – File and Directory
Discovery

Enumerates filesystem for sensitive
files via Lua script

12 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

T1082 – System Info
Discovery (likely)

Gathers info about system/user to
tailor attack (implied by adaptive
behavior)

Collection T1005 – Data from Local
System

Reads content of files deemed
sensitive

T1074 – Data Staging Writes list of target files to

target_file_list.log for processing

Exfiltration T1041 – Exfiltration Over C2
Channel

Uploads files to remote server via
scripted curl calls (over HTTP/HTTPS)

T1020 – Automated
Exfiltration

Automatically exfiltrates selected files
without human step-by-step control

C2 T1071.001 – Application
Layer Protocol (Web API)

Communicates with LLM over HTTP
API (Ollama on port 11434)

T1571 – Non-Standard Port Tunnels traffic to LLM server using port

11434 (not a typical web port)

— Closed-loop AI
Orchestration —

(Novel) LLM acts as automated C2,
planning attack steps autonomously

Defense
Evasion

T1027 – Obfuscated/Packed
Code

Polymorphic code generation – attack
scripts vary each execution

T1218 – Signed Binary Proxy
Execution (curl)

Abuse of legitimate tool (curl) for data
transfer to avoid detection

T1497 –
Virtualization/Sandbox
Evasion

(Potential) AI could adapt if it detects
sandbox artifacts (not documented in
PoC)

Impact T1486 – Data Encrypted for
Impact

Encrypts files on victim system using
SPECK algorithm

T1485 – Data Destruction Can wipe files (code present but not

activated)

T1491 – Defacement /
Ransom Note

Drops ransom note (note.txt) with
threats and payment info

(Impact - N/A) Personalized
Extortion

AI crafts ransom message referencing
victim’s own data (to maximize
pressure)

13 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

Indicators of Compromise (IOCs)
Because PromptLock is a proof-of-concept and not widespread, IOCs are relatively
limited to the sample artifacts and a few unique behaviors. Security teams should
watch for the following PromptLock indicators:

• Malware Sample Hashes: ESET published SHA-1 hashes of PromptLock files
found on VirusTotal. These include both Windows and Linux variants. Known
hashes (SHA-1) include:

o 24bf7b72f54aa5b93c6681b4f69e579a47d7c102 – PromptLock sample
(Linux)

o ad223fe2bb4563446aee5227357bbfdc8ada3797 – PromptLock sample
(Linux)

o bb8fb75285bcd151132a3287f2786d4d91da58b8 – PromptLock sample
(Linux)

o f3f4c40c344695388e10cbf29ddb18ef3b61f7ef – PromptLock sample
(Linux)

o 639dbc9b365096d6347142fcae64725bd9f73270 – PromptLock sample
(Windows)

o 161cdcdb46fb8a348aec609a86ff5823752065d2 – PromptLock sample
(Windows)

o 8c7bcafce90f5fb121131ecb27346ecfc6e961c5 – PromptLock sample
(Windows)

(All above were detected by ESET as Filecoder.PromptLock.A.) Any file with these
hashes (or detected under that name) is malicious.

The PromptLock binaries contain distinctive plaintext strings because of the embedded
prompts. For example, references to the model name "gpt-oss:20b" and the Ollama API
URL or localhost port 11434 appear in the code. Also, fragments of the prompt text
(English instructions for Lua code generation) are hard-coded. These strings can be
used in YARA rules. Example suspicious strings in PromptLock:

14 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

o "You are a Lua code generator" (or similar AI system prompt phrasing) –
instructing the LLM.

o "gpt-oss:20b" – the specific model identifier.

o "Ollama" – the API/engine name.

o "SPECK" – since the Lua script prompt explicitly mentions the SPECK
algorithm.

o Filenames like "target_file_list.log" or "note.txt" – artifacts the malware
uses.

If such strings are found in an unknown executable, it is a strong indicator of
PromptLock or a similar AI-driven malware. EDRs and scanners should flag binaries
containing these markers, especially the unique model reference.

• The ransom note content (if generated) contains a specific Bitcoin address –
notably the Satoshi Nakamoto Genesis address was used as a placeholder. That
address (commonly known as “1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa”) is
obviously a false payment destination (no attacker can spend from it). Its
presence in any ransom note or communication is a telltale sign of the
PromptLock PoC. Real attacks would use a different, attacker-controlled
address; however, if a ransom note references that exact address or claims
Satoshi’s identity, it’s likely the work of a copycat or a test rather than a serious
intrusion.

• PromptLock in its default configuration may cause the infected host to initiate
connections on TCP port 11434 – this is the default port for Ollama’s API. In a
typical enterprise environment, port 11434 is rarely used. Monitoring network
logs for outbound or lateral traffic on 11434 could reveal a PromptLock malware
attempting to reach an LLM server. Specifically, if a host that doesn’t run Ollama
locally is trying to connect to another host on 11434, it’s suspicious. (Attackers
might tunnel this, but any direct use is a clear sign.)

• PromptLock’s use of Lua might leave traces. If the malware writes the AI-
generated Lua script to disk (even temporarily) or spawns a lua interpreter
process, that’s an anomaly on most endpoints. For example, security logs might
catch a process dropping a .lua file or executing a Lua interpreter (which is
uncommon on typical user systems). Additionally, if a security solution monitors
in-memory code, detecting large chunks of Lua code or invocation of Lua
runtime libraries inside a process could be an indicator.

• During its operation, PromptLock is expected to create or modify a few specific
files:

15 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

o target_file_list.log – as mentioned, a log of files to act on. Presence of this
file (especially in a temp or user folder) with paths of many files listed
inside is a strong indicator.

o If the malware stages files for exfil, you might find copies of sensitive files
in a temp directory or a large archive being created (depending on
implementation). The PoC directly uploads files via curl, so staging on
disk might be minimal.

o After encryption, a plaintext ransom note file is typically left in directories.
For PromptLock, it specifically writes to note.txt per the research paper.
The note will contain a message generated by AI (which may have a
certain tone or even odd phrasing). Any ransom note referencing an AI (“I
am an automated intelligence…” etc.) or containing the Satoshi address
would be a clear sign.

o Since PromptLock uses its own script and SPECK, it might not add a new
file extension for encrypted files (unlike many ransomware that append
something like .locked). Instead, files might simply become garbled. One
IOC could be many files suddenly failing to open and containing high
entropy data, while their names remain the same. However, this is
generic; one might specifically look for references to SPECK in memory or
crash dumps.

• The following behavioral IOCs could indicate PromptLock:

o A process (especially a Golang binary with no prior reputation) performing
intensive file read operations across the system (enumerating user
directories, etc.), then launching multiple curl processes connecting to
external hosts. This combination – mass file access followed by network
exfil – is suspicious for ransomware and data theft.

o Unexplained outbound connections to hosts that are not common for the
environment, possibly correlating with the timing of file access. Because
the LLM C2 and exfil traffic might go to non-standard or new domains/IPs,
any spike of unusual DNS queries or IP connections from a user
workstation or server could be a clue.

o The binary name itself might vary (since it’s a PoC it had no fixed name).
But if someone finds a Golang binary of ~10-30 MB size with no digital
signature, created in 2025, that alone is suspect in many environments.

In summary, defenders should combine file-based IOCs (hashes, YARA strings) with
behavioral IOCs (Lua script execution, port 11434 connections, mass file access + curl

16 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

network usage, ransom note artifacts) to detect PromptLock. Given the malware’s
polymorphism, reliance on behavior-based detection is crucial (see next section).

Detection and Mitigation Strategies
Detecting and stopping a threat like PromptLock requires a blend of traditional
signature-based methods and advanced behavioral analysis. Likewise, mitigation
involves both preventative measures (to reduce the chance of infection) and response
strategies (to limit damage if malware runs). Below are recommended detection and
mitigation approaches, including use of YARA, Sigma, and heuristics:

Detection Strategies
Security teams can craft YARA rules to identify PromptLock binaries by matching unique
strings and characteristics embedded in the file. As noted, the presence of the model
identifier gpt-oss:20b or the phrase ollama in a PE/ELF file is a high-confidence
indicator.

Also, fragments of the AI prompts (English sentences about file searching, Lua code
generation, or ransom note phrasing) can be matched. For example, a YARA rule could
trigger on strings like "function encrypt_file(" and "SPECK" and "rb+" (from the
encryption script logic) occurring together in a binary. Another string from the ransom
note prompt – e.g. "You are a cybersecurity expert" – is unlikely to appear in normal
software and would be a strong indicator.

Because the core PromptLock executables remain consistent across runs, such YARA
rules can reliably flag the malware before it executes. ESET’s Anton Cherepanov noted
that “robust security solutions could flag these executables as malicious” given their
consistent footprint. This implies that endpoint security products can incorporate YARA-
like signatures for PromptLock. As a precaution, organizations should update AV/EDR
signatures (many vendors by now detect PromptLock as some variant of Filecoder.AI
ransomware).

Creating custom YARA rules for additional defense in depth (e.g., to scan incoming files
or routinely sweep file shares for any PromptLock artifacts) is highly recommended.

To complement static scanning, detection engineers should deploy Sigma rules or SIEM
alerts for behaviors associated with PromptLock:

o Alert on a single process reading a large number of user files or scanning
directories in quick succession. Many EDRs can trigger if an unusual
process opens hundreds of files (especially if it’s not an indexer or backup
process). A Sigma rule could look for event patterns like: Process =
unknown EXE, File accesses > X in Y minutes.

17 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

o : If your environment can monitor scripting engine usage, any invocation
of a Lua interpreter or the creation of .lua files should be rare. A Sigma
rule might detect a process spawning lua.exe on Windows or processes
loading lua.dll/liblua.so modules unexpectedly. HivePro specifically
recommends tracking Lua script execution as a behavior to catch
PromptLock. While PromptLock’s Golang binary might have an embedded
Lua runtime (no separate process), any attempt by a non-developer tool
to run Lua code is unusual in enterprise logs.

o Many Linux and macOS logging solutions can catch command-line usage.
A rule could flag a process (that is not a software updater or known
service) launching curl with http:// or https:// arguments, especially if it
happens repeatedly in a short span. On Windows, if the malware uses
something like curl.exe (Windows 10+ include curl) or an equivalent web
request, that can be logged via command-line auditing. Detecting a series
of HTTP POSTs to an unfamiliar server by a user process should raise an
alert as well.

o Monitor network logs for any internal host listening on or connecting to
port 11434. If an admin has not explicitly installed Ollama (an AI service)
in your environment, this port should normally see no traffic. A Sigma rule
can watch firewall or proxy logs for outbound connections to any IP on
port 11434, or internal east-west traffic on that port. This can catch both
scenarios: malware trying to reach an external AI host, or a compromised
machine running an illicit local Ollama server.

o The PromptLock sample might not have a consistent name, but if you
observe a binary with a name trying to masquerade as something
legitimate but running from the wrong path (e.g., notepad.exe in a Temp
folder, or svchost.exe in a user directory), that’s a generic red flag.
Coupling that with the above behaviors (file access, network) can improve
fidelity of detection.

o Because any single behavior of PromptLock might mimic benign activity
(e.g., curl is legitimate, file access could be an indexing service), look for
combinations: The same process doing file enumeration, then network
exfil, then writing a note file. A well-tuned SIEM detection could say: alert
if a process touches >100 files and within an hour opens a network
connection to an IP never seen before, and writes a .log or .txt file with
certain keywords. Such multi-factor correlation is key to catching smart
malware.

18 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

o Deploying canary files (decoy files with monitoring) can help detect
ransomware. If PromptLock touches certain bait files (like a fake
passwords.xlsx placed in a folder, monitored for reads), that could trigger
an alert. Since PromptLock’s AI might likely pick up juicy filenames, well-
crafted lures named "HR_Salaries.csv" or "TopSecret.txt" could be
attractive and lead the malware to reveal itself. Honeypot SMB shares or
dummy data that should never be accessed could similarly catch its
enumeration or exfil attempts.

Mitigation Strategies
• Since the likely entry vector for malware like PromptLock is phishing or user

execution, reinforce user awareness. Educate users about not running unknown
programs or opening suspicious email attachments – especially tools claiming AI
capabilities from untrusted sources. Deploy strong email filtering to block
malicious attachments and use sandboxing for file downloads. PromptLock
could be hidden in something that lures users with AI (e.g., “AI assistant tool”).
Ensuring users treat unsolicited “new AI tool” executables with skepticism is
important.

• Limit the damage potential by running users with standard (non-admin)
accounts whenever possible. If PromptLock executes with user-level rights, it
might be unable to encrypt files outside that user’s profile or access network
shares (if those require elevated access). Use of application whitelisting or
restricting execution in certain directories (e.g., only allow programs from
Program Files to run) can prevent a random downloaded PromptLock binary from
launching. Tools like Microsoft AppLocker or Windows Defender Application
Control can be configured to disallow execution from Temp or Downloads
folders, which would thwart many malicious droppers.

• Ensure that OS and software are up to date, to reduce the risk of exploits that
could be paired with an AI malware (even though PromptLock didn’t use one,
future variants might). Disable or restrict utilities that PromptLock abuses: for
instance, if curl is not needed on Windows endpoints, consider removing or
locking it down. On Linux, you can alias curl to a monitoring script in sensitive
environments to catch misuse. Likewise, monitor use of tools like PowerShell,
which an AI malware might leverage similarly.

• Limit the ability of malware to exfiltrate data or reach out to AI hosts. Implement
strict egress filtering – only allow necessary external connections from
servers/workstations. Block or require proxy for non-standard ports like 11434;
so even if PromptLock runs, it cannot directly connect to the attacker’s LLM API
without detection. Use network segmentation to prevent an infected machine

19 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

from scanning and accessing wide file shares or critical servers. In one scenario,
PromptLock could compromise a low-privilege machine but then the AI might
instruct it to move laterally. Strong internal segmentation and firewall rules can
contain such spread.

• As organizations adopt AI platforms (e.g., local LLMs, Jupyter notebooks, etc.),
treat them as potential dual-use tools. Implement monitoring and access control
for internal AI infrastructure. If a server running Ollama or similar is set up,
secure it with authentication and network restrictions so that a malware can’t
just connect and use it. Conversely, block outbound access to known public AI
APIs from sensitive systems – some malware might try to abuse cloud AI (though
PromptLock used a local model).

• Use EDR solutions that can automatically block or isolate a host when
ransomware behavior is detected. Many EDRs have ransomware heuristics (like
rapid file modifications) – tune these to include detecting exfiltration patterns. If
a host begins enumerating and exfiltrating data, automated playbooks could cut
off its network access (to stop exfil) and alert security staff. Given PromptLock’s
speed (AI-driven decisions can accelerate the kill chain), having automation to
respond quickly is crucial.

• Despite best detection efforts, some ransomware may slip through. Mitigation of
impact then relies on maintaining comprehensive data backups and a practiced
incident response (IR) plan. Follow the 3-2-1 backup rule: keep three copies of
data, on two different media, with one offline/offsite copy. Ensure backups are
protected from tampering (immutable backups or at least credentials separate
so ransomware can’t encrypt the backups too). Test your backup restore process
regularly so you can recover data if PromptLock (or any ransomware) strikes. In
addition, an IR plan should include steps for ransomware: isolating infected
machines, preserving forensic data (like memory dumps that might contain the
AI prompts or keys), and notification/escalation procedures.

• If using any AI frameworks internally (Ollama, etc.), keep them updated. While
PromptLock didn’t exploit a vulnerability in Ollama, one can imagine future
malware might target vulnerabilities in local AI services. Also, monitor the
research community for any defensive tools or patches. For example, the
academic team behind PromptLock also researched behavioral signals of such
AI malware. Future endpoint solutions might incorporate those findings (like
detecting certain AI model load patterns).

• As AI becomes part of the IT environment, consider dedicated monitoring for AI
workloads. For instance, if high-end GPUs are present, sudden usage by an
unknown process could be a flag. In PromptLock’s case, the LLM was run

20 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

remotely, but if an attacker tries to package a smaller model locally, you might
catch unusual processes consuming GPU/TPU resources on a workstation.
Similarly, keep an eye on processes that normally wouldn’t do heavy
computation suddenly using lots of CPU – that could indicate an LLM is running
or being queried.

• Share any new IoCs or behaviors related to PromptLock with the community
(through ISACs, CERTs, etc.). As this is an emerging threat area, collective
intelligence will help. The academic authors withheld some details to prevent
misuse, but if any organization finds PromptLock in the wild, reporting it will be
vital to update defensive measures. Stay tuned to reputable sources (ESET
research updates, threat intel blogs, etc.) for any evolution of this threat.

• Explore using AI defensively – e.g., employing machine learning models to detect
the kind of polymorphic tactics used by PromptLock. Some security teams use
generative AI to hypothesize malware variants or assist in writing detection rules
(even ChatGPT could help formulate YARA/Sigma rules given descriptions of
behavior). Just as attackers leverage AI, defenders can too – to simulate attacks,
bolster analysis, and automate response. However, remain cautious of over-
reliance on AI without human verification, especially since attackers might
attempt to trick defensive AI (the “AI vs AI” scenario).

Conclusion
PromptLock represents a pivotal moment in malware evolution – a shift from hand-
crafted code to malware that “writes itself” using artificial intelligence. Historically, we
have seen polymorphic and metamorphic malware that modify their code to evade
detection, but PromptLock takes this to the next level by leveraging an external AI model
to generate context-aware malicious code in real time. This approach can yield highly
adaptive malware that is difficult to detect using traditional signatures, as each
infection can look different at the code level.

For cybersecurity professionals, PromptLock is both a warning and an opportunity. It
warns that threat actors (from APTs to ransomware gangs) will likely integrate AI to
streamline and supercharge their attacks. This could lead to ransomware that spreads
faster, adapts to each victim automatically, and evades many existing defenses. But it
also provides a concrete example that defenders can study to get ahead of the curve. By
analyzing PromptLock’s TTPs, the community has devised new detection techniques
and begun adjusting best practices (as outlined above).

In the cat-and-mouse game of cybersecurity, the arrival of AI-driven malware means
defenders must also up their game, potentially using AI for anomaly detection,
automating incident response, and focusing on the fundamental behaviors of attacks

21 | P a g e
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

rather than static indicators. Ransomware fortified with AI could target a broader range
of victims – not just large enterprises but also individuals and small businesses –
because the AI lowers the skill barrier for deploying sophisticated attacks. This makes
basic cyber hygiene (patching, least privilege, backups, user education) even more
crucial for everyone.

Finally, while PromptLock in its current form is a proof-of-concept, the threat it signifies
is very real. Security teams should treat this moment as a chance to anticipate the “next
era” of cyber threats. PromptLock may be the first of its kind, but it will certainly not be
the last. By implementing the detection and mitigation strategies discussed – and
fostering collaboration across the infosec community – we can prepare for and protect
against AI-powered malware, keeping one step ahead of adversaries as they venture
into artificial intelligence.

