XWorm RAT
Technical Analysis
(2024-2025
Variant)

Cybanetix
V1.0 27/06/2025

Cybanetix Limited

cybanetix.com

Registered at:

The Coade

Level 9

98 Vauxhall Walk

London

SE11 5EL

Company Registration: 10558582

O
VAT Number: GB 262502430 CYBANETIX

Table of Contents

2 F=To] (<=1 £o 101 o o I P PPN 3
Infection Chain and Payload DELIVEIY ...t e e e e 3
IVEEII AACCESS .- 3
MUIt-Stage LOAAET EXCULION ..o 4
EXPIOitation Of KNOWN VUINEFADITIES ...ooooooooooooosoeesoeeeeeeeeee s 5
XWorm Payload Behavior and CapabilitieS.......cueviiiiiiiiiriiieii et eeaes 5
Command and Control (C2) COMMUNICAIONSv.ovovrvooooorrroeereeeseee e 5

Remote AcCess FUNCHIONS AN MOGUIES ... 6
PEISISEENCE IMIECRANISIIS ... 8
Obfuscation and EVASion TECANIGUESoooooooooooerooereeeeeeeee e 9
Indicators of Compromise and Analysis Artifactsccoviiiviiiiiiiiiiiiiiei e, 11
Tactics, Techniques, and Procedures (TTPs) of X\Worm Attackers (2024-2025) 12
Recent Notable Campaigns Involving XWorm (2024-2025).......ccveuiiieieeenieeeeeneenennnn. 15
(7015 [¢] (V][] o HRO TP 18
2|Page

Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

XWorm RAT - Technical Analysis (2024-
2025 Variant)

Background

XWorm is a remote access Trojan (RAT) first discovered in 2022. It is a versatile malware
tool that enables attackers to steal sensitive information, gain remote control of
systems, and even deploy additional payloads. X\Worm is sold as malware-as-a-service
on underground forums and via Telegram, making it easily accessible to cybercriminals.
Its appeal lies in a wide range of dangerous features, ranging from typical RAT functions
like surveillance and data theft to destructive actions like file encryption (ransomware
behavior) and DDoS attacks. The malware’s multifaceted nature has attracted both
financially motivated actors and state-sponsored groups. In fact, multiple threat groups
have adopted XWorm: for example, the North Korean APT Kimsuky has been observed
using XWorm in recent campaigns, and cybercrime groups like NullBulge have
leveraged XWorm alongside other RATSs to ultimately deploy ransomware (LockBit).
XWorm’s continual development has yielded new versions (the latest known version is
XWorm 6.0 as of mid-2025) that introduce enhanced stealth, persistence, and anti-
analysis capabilities. The following report provides an in-depth technical breakdown of
XWorm'’s latest variant — covering its infection chain, payload behavior, C2
infrastructure, obfuscation and anti-analysis techniques, persistence mechanisms,
data exfiltration methods, and the TTPs associated with attackers deploying XWorm in
2024-2025.

Infection Chain and Payload Delivery

Initial Access

Attackers typically deliver X\Worm to victims via social engineering and phishing lures.
Campaigns often use malicious email attachments or links to initiate the infection. For
instance, one observed tactic is sending a ZIP archive (disguised as a business
document or other lure) that contains an obfuscated script loader. In recent cases,
adversaries have employed unusual file formats like SVG images with embedded
JavaScript to deliver X\Worm: the SVG, when rendered (e.g. in a phishing page or a
vulnerable viewer), triggers an embedded script that kicks off the infection chain. More
commonly, XWorm campaigns have used malicious Windows Script Files (WSF), Visual
Basic scripts (VBS), batch scripts (BAT), or LNK shortcuts as initial droppers. These
droppers are heavily obfuscated to evade detection — for example, a malicious WSF

3|Page
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

might include decoy text and a hidden VBScript segment with hex-encoded commands
to appear benign to static scanners.

Multi-Stage Loader Execution

Once a user opens the booby-trapped file, a multi-stage execution chain unfolds. In
one documented infection flow, a WSF dropper (delivered via phishing) executes a
hidden VBScript that downloads a second-stage PowerShell script from a paste site
(e.g. Paste.ee). Using trusted sites to host malicious code helps the attacker stay under
the radar of network defenses. The PowerShell script in turn creates additional files and
tasks: for example, it may drop an additional VBScript, a batch file, and another
PowerShell module onto the system (often placing them in innocuous-looking
directories like C:\ProgramData\Music\Visuals). It then sets up a scheduled task or
registry autorun to persist and execute the next stage. In the cited case, the PowerShell
created a scheduled task named “MicroSoftVisualsUpdater” to run the dropped
VBScript after a short delay and repeatedly every 15 minutes. This VBScript triggers the
BAT file, which then runs the final PowerShell loader script.

At the final stage, X\Worm’s core payload is loaded filelessly into memory. Rather than
writing the RAT executable to disk, the loader (often a PowerShell or .NET-based stub)
will reflectively load the XWorm payload or inject it into a legitimate process. For
example, researchers observed a PowerShell loader script that stored the XWorm binary
and a DLL injector (“NewPE2”) as hex-encoded strings in its code (to avoid easy
detection). This loader used .NET reflection to load the injector DLL from memory, then
invoked its Execute method to inject the X\Worm payload into a legitimate Windows
process (in this case, RegSvcs.exe, a signed Microsoft .NET service process). As a
result, X\Worm began running under the context of a trusted process, with the original
PowerShell script terminating to leave few obvious traces of malware in the process list.
(Past variants have also employed process hollowing or similar code injection
techniques to hide the malicious thread in system processes.)

In other campaigns, the infection chain may differ slightly — for example, Proofpoint
reported a cluster of attacks in 2024 using Cloudflare “TryCloudflare” tunnels and
WebDAV shares for staging malware. In those cases, phishing emails delivered a .URL
shortcut file that, when clicked, connected to an attacker-controlled WebDAYV server to
retrieve a malicious LNK or VBS file. That file then executed a BAT/CMD script, which
downloaded a Python installer and multiple Python scripts to eventually load the RAT
payload. Regardless of delivery method, the common theme is a layered execution
chain involving scripts and living-off-the-land binaries (e.g. wscript.exe for VBS,
powershell.exe, cmd.exe, etc.) to download or construct the XWorm payload in memory,
thereby avoiding direct disk writes of the final malware.

4|Page
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

Exploitation of Known Vulnerabilities

In addition to phishing, attackers have occasionally exploited known code execution
vulnerabilities to deploy X\Worm. Notably, a wave of attacks in mid-2023 leveraged the
“Follina” vulnerability (CVE-2022-30190) in Microsoft Office to drop XWorm. In those
cases, malicious Office documents abused the MSDT protocol (the Follina exploit) to
execute PowerShell code, which then pulled in XWorm as the final payload. This
highlights that both social engineering and software vulnerabilities can serve as the
initial exploitation vector for X\Worm infections.

XWorm Payload Behavior and Capabilities

Command and Control (C2) Communications

Once running on a victim host, X\Worm will establish contact with its command-and-
control server. The RAT is usually configured with a hardcoded C2 address (domain or
IP) and port, stored in its embedded configuration. In older versions, the C2 could be
supplied via command-line arguments from the loader script, but in the latest variant
(v6.0) the XWorm binary itself contains the C2 info encoded in its config. The config data
is encrypted (for example, version 5.6 stored config values in Base64 encoded strings
further encrypted with AES-ECB using a hardcoded key). On launch, XWorm decrypts its
configuration to retrieve the C2 host and port, an encryption key, its campaign or group
ID, and other settings. For instance, one sample’s config decrypted to a domain
ziadonfire[.Jwork[.]gd with port 7000, along with an AES key and version tag indicating
“XWorm V5.6,

XWorm uses a direct socket connection to communicate with the C2. It typically opens
a TCP socket to the configured IP/port (after resolving any domain). The malware is
capable of handling binary data transmissions and maintains an interactive session
with the C2. To keep the session alive, X\Worm periodically sends heartbeat “ping”
messages — for example, pinging the C2 every 10-15 seconds — and expects a
corresponding “pong” from the server, checking for that response very frequently
(multiple times per second). All communication is encapsulated in this socket channel,
and may be further encrypted or encoded using the negotiated key from the config
(XWorm'’s protocol uses the AES key for encrypting payload data and possibly for certain
command content).

In some campaigns, actors have modified XWorm or used its builder to utilize alternate
C2 channels. For example, a trojanized XWorm builder observed in late 2024 registered
infected machines to a Telegram-based C2 using a hardcoded bot token. In that variant,
each new victim would connect to a Telegram bot, which acted as the C2 server for
receiving commands and exfiltrating data. This demonstrates the flexibility of X\Worm’s

5|Page
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

C2 infrastructure — while the default is a typical host:port setup, the malware-as-a-
service model allows buyers to configure custom C2 mechanisms (including public IM
platforms or web APIs) when generating the payload. Indeed, XWorm’s presence on
darknet forums means multiple actors can run their own C2s globally, and some have
been seen abusing services like Paste.ee, Discord webhooks, or Cloudflare Tunnels for
staging and C2 relay.

Once connected, XWorm usually begins by sending a reconnaissance payload to the
server. It gathers system information to identify the infected machine to the attacker.
Data collected typically includes the hostname, current username, OS version,
hardware info (CPU, GPU), the privilege level (whether admin), presence of antivirus,
and even a specific marker for USB drives or files (one config included a value “USBNM
USB.exe”). This info is concatenated with a delimiter string and the X\Worm version, then
transmitted to the C2. Some versions generate a unique victim identifier (e.g., by
hashing certain system info) to tag the machine in the C2 database. After this initial
beacon, the RAT enters a loop awaiting commands from the attacker.

Remote Access Functions and Modules

XWorm'’s latest variant offers a comprehensive arsenal of RAT capabilities, often
configurable through its builder. Analysis of version 5.6 and 6.0 reveals an extensive list
of supported commands (dozens in total), enabling the attacker to perform virtually any
action on the compromised system. Key payload functionalities include:

e XWorm can spy on the victim’s activities and steal data. It can record keystrokes
(a “keylogger” command captures everything typed), capture screenshots of the
desktop, and harvest credentials from web browsers (stealing saved passwords,
cookies, and autofill data). In one campaign, the malware automatically stole
Discord authentication tokens and gathered the system’s public IP-based
geolocation as soon as it infected a machine. All stolen data is exfiltrated back to
the C2 (for example, screenshots are encoded to JPEG and sent via the socket
channel).

e The RAT supports commands to manipulate files on the victim. It can download
and execute files from the internet or C2 (LN command for “download and run”),
and can upload specified files from the victim to the C2 (exfiltration on demand).
It also has an uninstall command to delete its own binaries and artifacts from
the system when instructed — useful for covering tracks. Notably, XWorm
introduced functionality to manage plugins: it can load additional modules (DLLs
or code for extra features) and also remove those plugins and their traces from
the registry when commanded (the RemovePlugins command cleans up stored
plugin info to wipe evidence). This modular design means XWorm’s functionality
can be extended with custom plugins (e.g., for specific network scanning,

6|Page
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

credential dumping, etc.), and attackers can later remove them to reduce
footprint.

¢ XWorm enables remote command execution and control of processes. It can
spawn a hidden remote shell (RunShell) to run arbitrary system commands in the
background. There are commands to run specific PowerShell scripts or
shellcode: for instance, a DW command writes a provided PowerShell snippet to
atemp file and executes it, and an FM command executes a compressed
Base64-encoded command given by the attacker. X\Worm can also open URLs on
the victim’s browser (visible or hidden from the user) for further exploitation or
surveillance. Standard host control commands include shutting down,
restarting, or logging off the system remotely (PCShutdown, PCRestart, etc.).

¢ While XWorm does not inherently self-propagate, it provides tools that could
facilitate lateral movement by an adversary. For example, it can enumerate
running processes and report back which processes are active (StartReport
command) — an attacker could use this to identify security tools or pivot targets.
Using its shell access, an operator could deploy credential-dumping tools or
leverage Windows commands to move laterally. X\Worm’s ability to modify the
Windows Hosts file is an interesting feature that could aid post-exploitation; it
can read the hosts file and send it to the attacker, or replace it with an attacker-
supplied version (Hosts and Shosts commands). By poisoning the hosts file,
attackers might reroute network traffic or spoof domains as part of a broader
attack on the local network.

¢ The malware itself does not exploit privilege escalation vulnerabilities, but it
does check and take advantage of high privileges if available. If X\Worm is running
with administrator rights, the latest version will attempt to mark its process as a
critical system process. This is done by enabling debug privileges
(SeDebugPrivilege) and calling Windows APlIs to flag the process as critical. A
critical process cannot be terminated by regular means; if an admin user force-
kills it, the system will crash (Blue Screen). Thus, by making itself critical, XWorm
ensures it can’t be easily killed without drastic consequences - a form of self-
protection. After a crash/reboot, X\Worm would restart via persistence to
continue execution. In terms of obtaining admin in the first place, attackers using
XWorm may employ social engineering (e.g., UAC prompts) or other tools to
elevate privileges prior to deploying the RAT. The Kimsuky APT, for instance, made
use of living-off-the-land binaries and scripts that could disable Windows logging
and perform other tasks requiring admin rights, indicating they had or obtained
elevated privileges during their multi-stage attack.

¢ Unusually for a RAT, XWorm can launch Denial-of-Service (DoS/DDoS) attacks
from the infected host. A command StartDDos causes the victim machine to
7|Page

Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

begin flooding a target IP and port with HTTP POST requests every few seconds
(with random fake user-agent strings). The attacker can specify the target and
duration of the attack, effectively using the compromised system as part of a
botnet for DDoS. Another harmful capability found in some XWorm versions is
the ability to encrypt files on the victim system on command. The trojanized
builder observed by CloudSEK researchers exposed commands like /encrypt
<password> which would instruct X\Worm to encrypt all files on the host with a
provided password. This effectively turns XWorm into a rudimentary ransomware
if the attackers choose to invoke it. Combined with its data theft features, it
could be used for “double extortion” (stealing data and then encrypting files). In
general, these features illustrate that X\Worm is not only an espionage tool but
can also facilitate sabotage and monetization (whether via ransomware or forced
participation in DDoS).

Persistence Mechanisms

Maintaining persistent access to an infected system is a priority for XWorm operators,
and the malware provides several methods to achieve this. The exact persistence
mechanism can be selected by the attacker when building the payload. The XWorm
builder offers options such as installing via registry Run keys, creating scheduled tasks,
or copying itself to the Startup folder, among others. In earlier versions, a common
technique was to set up a Scheduled Task that periodically re-launches the malware or
loader script (as seen with tasks like “MicrosoftVisualsUpdater” running the Visual
Basic script every 15 minutes). The latest observed variant (v6.0) used a simpler
approach: it writes a copy of its dropper script (e.g. update.vbs) into both the %TEMP%
and %APPDATA% directories, then creates a Registry Run key pointing to those
locations. By adding entries under
HKCU\Software\Microsoft\Windows\CurrentVersion\Run (or the equivalent HKLM path
for all users), X\Worm ensures that its script will execute on every user logon, thus
reloading the RAT in memory.

This dual-path persistence (Temp and AppData) provides redundancy — even if one copy
is removed, the other might still execute. It differs from the previously observed sample
that exclusively relied on a scheduled task. The shift indicates attackers are
experimenting with what is stealthier or more reliable in practice. Some XWorm
infections have also leveraged LOLBAS (Living-Off-the-Land Binaries and Scripts) for
persistence; for example, utilizing powershell.exe with the -WindowStyle Hidden flag
and encoded commands in a registry entry, or abuse of wscript.exe to run a script on
startup. The Kimsuky campaign in 2025 demonstrated a fileless persistence by staying
entirely in PowerShell/memory and using encoded scripts that re-trigger via system
mechanisms. In the CloudSEK-documented builder attack, X\Worm established
persistence by performing specific Windows Registry modifications (likely the Run key

8|Page
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

method) as soon as it confirmed it wasn’t in a virtualized environment. In summary,
XWorm'’s persistence can vary, but common tactics are registry autoruns, scheduled
tasks, startup folder copies, and occasionally WMI or service installation if the attacker
so chooses. These methods ensure that even if the system reboots or the user logs off,
the malware will regain execution and reconnect to its C2, maintaining the adversary’s
foothold.

Obfuscation and Evasion Techniques

XWorm’s developers have put significant effort into obfuscation and anti-analysis to
evade detection by security products and researchers. From the initial dropper stages
through to the in-memory payload, the malware employs multiple layers of hiding and
checks:

o The first-stage droppers (VBS, BAT, etc.) are typically highly obfuscated. For
example, a XWorm v6 infection started with a VBScript that stored an array of
character codes which, when iterated in reverse and converted via ChrW,
produced the actual malicious script at runtime. This runtime generation of
code, combined with use of Execute/Eval on the fly, thwarts simple static
analysis. Batch scripts observed in 2025 campaigns were also convoluted —
containing junk data or encoded payloads hidden in comments (using ::: as seen
in one PowerShell-loader-in-BAT strategy). The use of fileless techniques is a
core evasion strategy: rather than dropping an obvious .EXE file to disk, X\Worm is
often loaded in memory via PowerShell’s Invoke-Expression or .NET reflection.
This means traditional file-scanning antivirus might never see a standalone
malware file to flag. As one report noted, the XWorm binary (XClient3.exe) was
detected by many AV engines on VirusTotal, so the attackers simply chose not to
write it to disk at all, making detection much harder.

¢ XWorm stages make heavy use of legitimate system tools and trusted external
services to blend in. The malware’s infection chains often leverage PowerShell,
Windows Script Host (wscript), and trusted cloud services. By storing second-
stage scripts on Paste.ee, GitHub, or cloud storage, the malware traffic appears
similar to normal user or system activity (accessing a pastebin or a GitHub URL).
The Proofpoint-observed campaigns abused Cloudflare tunneling to make C2
communications appear as if they were going to Cloudflare infrastructure, a
trusted domain. These techniques help XWorm bypass network filters and make
incident response more difficult.

e Toevade detection by host-based defenses, newer XWorm variants implement
direct anti-analysis patches in memory. A prime example is the Antimalware
Scan Interface (AMSI) bypass introduced in X\Worm 6.0’s PowerShell loader.
Before loading the RAT, the PowerShell script searches the running process’s

9|Page
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

memory for the DLL CLR.dll (the .NET Common Language Runtime) and the
string AmsiScanBuffer within it. Upon finding that signature, it overwrites the
AMSI scan function with null bytes (or a simple return instruction), effectively
disabling AMS/I’s ability to scan any further script content. This means any
malicious code loaded afterward won’t be inspected by antivirus hooks that rely
on AMSI. Additionally, some XWorm loader scripts disable Windows Event
Tracing and logging. For instance, an analyzed batch/Powershell loader in 2025
used .NET interop to locate and patch EtwEventWrite (the Event Tracing API),
neutering Windows’ ability to record events for the malicious process. The
Kimsuky APT’s use of X\Worm also involved executing PowerShell with
commands to disable Windows Event Logging altogether, likely via registry or
policy changes, as a defense evasion step during infection.

o XWorm takes steps to detect ifit’s running in an analysis environment. The latest
variant notably terminates itself on finding Windows XP as the OS. This might
seem counter-intuitive (as XP is outdated), but many sandbox environments and
malware analysis labs use Windows XP or similarly old systems for detonating
malware. By shutting down on XP, XWorm avoids running in those sandbox traps.
Another check implemented is for virtualization or researcher network
indicators: X\Worm v6 uses an AnyRun-labeled function that actually queries an
online API (ip-api.com) to check the victim’s IP address category. If the IP is
recognized as belonging to a cloud data center or known hosting provider
(common for sandbox services like Any.Run, VirusTotal, etc.), XWorm assumes
it’s being analyzed and will self-terminate. Earlier observed versions (e.g., the
trojanized builder variant) similarly inspected the Windows Registry for keys
associated with virtual machines (like VMware/VirtualBox artifacts) and would
abortif a VM is detected. These checks help XWorm avoid executing its full
routine under scrutiny, thus flying under the radar of automated analysis
systems.

e Byinjecting into legitimate processes (such as RegSvcs.exe, msiexec.exe, or
other common Windows processes), XWorm obscures its presence. The injected
code runs under the memory space of a trusted binary, making it harder for
defenders to spot a rogue process. Some variants have been seen using process
hollowing — spawning a process in suspended state and replacing its code with
the malware - to hide in plain sight. Running within a Windows system process
also grants the malware some free pass with firewall or EDR behavior
monitoring, as those processes are often whitelisted for certain operations.

e Attackers using X\Worm also employ tricks to ensure the user doesn’t notice
anything suspicious during infection. Kimsuky’s PowerShell loader, for example,
embedded C# code to call the Win32 APl ShowWindow on various windows to

10|Page
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

hide any console or script windows that might briefly appear. The PowerShell
was run with -WindowStyle Hidden and other flags (-nop -w hidden -enc ...) to
ensure no visible artifacts alert the victim. Additionally, many campaigns display
decoy documents or files to the victim as a smokescreen. For instance, while
XWorm installs in the background, a benign PDF document might open (as was
the case in the Cloudflare tunnel campaigns) to convince the user that the email
attachment was harmless or just didn’t do anything significant. Meanwhile, the
malware executes behind the scenes.

Indicators of Compromise and Analysis Artifacts

Analyzing X\Worm infections yields several Indicators of Compromise (IOCs) and
notable artifacts that defenders can watch for:

e Although XWorm tries to stay memory-resident, the initial stages do leave some
traces on disk. Look for unusual script files in user directories. For example,
XWorm droppers have used file names like update.vbs (often placed in % TEMP%
or %APPDATA%), or random-named PowerShell scripts such as wolf-8372-4236-
2751-hunter-978-ghost-9314.ps1 (as seen in one v6.0 infection chain). The
presence of multiple script files with names referencing “Labs” or random words
(e.g. VsLabs.bs, VsEnhance.bat, VsLabsData.ps1 in one case) in odd folders like
C:\ProgramData\Music\Visuals can be an IOC. Any scheduled task named
similarly to “MicrosoftVisualsUpdater” or containing “Visuals” in its actions
might indicate this malware’s persistence. Registry run keys pointing to *vbs or
* bat files in Temp/AppData are another red flag, especially if the value name is
innocuous (XWorm may use names like “Update” or others to blend in).

¢ XWorm C2 domains and IPs vary by campaign, but a notable indicator is unusual
TCP connections to high-numbered ports (e.g., port 7000 as in one config,
though ports can change). Since XWorm often uses direct sockets, the traffic
might not use HTTP(S) and could appear as unknown TCP streams in network
logs. Some identified C2 addresses from 2024-2025 campaigns include:
ziadonfire.work[.]gd (domain), and IPs like 185.235.128.114 and 92.119.114.128
used by Kimsuky’s campaign. These addresses were seen delivering or
controlling X\Worm payloads and should be considered indicative if found in logs.
Additionally, X\Worm'’s ping/pong traffic might be observable: the malware pings
the server every few seconds, so repeated small TCP packets to a fixed
destination at ~10-second intervals could hint at a beacon. In some XWorm
variants (like the builder backdoor), the C2 was a Telegram bot — meaning the
infected host would connect to Telegram’s servers or APl endpoints. Network
connections to Telegram domains or IPs by systems that don’t normally use
Telegram could be a clue.

11|Page

Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

If analyzing a sample statically or in memory, certain unique strings or behaviors
can reveal XWorm. For example, the config decryption routine in one version
used the string rZ2W67345HrmrYRB (an encryption key seed) — seeing thisin a
binary or scriptis a strong indicator. XWorm’s commands often contain
identifiable keywords. The CloudSEK analysis showed commands prefixed by a
machine ID and an asterisk, followed by words like browsers, keylogger, desktop,
encrypt, etc., as the action. Finding such patterns in malware traffic or memory
(e.g., /12345*keylogger) suggests XWorm or a similar RAT is present. XWorm also
tends to create or seek out certain mutexes or file markers for single-instance
control — while specific mutex names haven’t been publicized in our sources,
behavioral analysis tools have noted XWorm checking for previously run
instances (this could be via a mutex or registry flag).

Observing a process that calls ip-api.com to check its IP or one that terminates
itself when detecting certain OS or virtual machine artifacts could indicate
XWorm. For instance, if a malware sample runs and immediately exits on
Windows XP but not on Windows 10, it’'s employing a trick that X\Worm v6 used.
Also, any process that attempts to modify the memory of CLR.dll at runtime to
patch AMSI (AmsiScanBuffer) is exhibiting behavior identical to X\Worm’s loader.
Such behavior can be caught by advanced EDR solutions that monitor memory
patching.

Security teams have successfully extracted hardcoded tokens and kill-switches
from at least one XWorm variant to disrupt its botnet. In that case, researchers
found an embedded kill-switch that they activated to uninstall the malware from
many victim machines, highlighting that thorough reverse engineering of XWorm
can reveal countermeasures to aid defenders.

Tactics, Techniques, and Procedures (TTPs) of XWorm
Attackers (2024-2025)

Attackers leveraging XWorm have demonstrated a range of TTPs across the kill chain,

from initial compromise to lateral movement and defense evasion. Below is a summary

of the key tactics observed in 2024-2025 campaigns involving XWorm:

Phishing is the predominant initial access vector. Threat actors send targeted
emails with either malicious attachments (Office documents, compressed
archives, HTML/ZIP packages, etc.) or links to download a payload. They often
craft lures relevant to the victim (e.g. invoice themes, package delivery notices,
or even topics in multiple languages). In many cases, the email contains a
malicious shortcut file (.LNK) or an HTML/URL file that leads to a drive-by

12|Page

Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

download. For example, one campaignh enticed users to click a .URL file that
would connect to afile share and retrieve a hidden LNK dropper. Another ploy
has been using OneNote files or PDFs with embedded scripts to launch the
infection (taking advantage of the trust in those file types). Furthermore, some
advanced campaigns exploit vulnerabilities at this stage — as mentioned, the use
of the Follina exploit to directly run PowerShell ensured that simply opening a
rigged Office document could inject X\Worm without requiring macro
enablement. Across these methods, social engineering remains crucial: threat
actors often accompany the malware delivery with decoy content (e.g., a
harmless document or image that opens to avoid raising suspicion while
malware installs in background).

¢ Upon gaining code execution on the victim’s machine, attackers frequently use
Living-off-the-Land techniques to run payloads. PowerShell is a favorite —in
XWorm campaigns, encoded PowerShell commands execute the next stages
(e.g., downloading payloads, injecting the RAT). Attackers employ encoded
scripts, Base64 blobs, and LOLBAS like rundll32, regsvcs, or WMI to launch the
malware in a stealthy way. Defense evasion at this stage is paramount: scripts
are obfuscated (hex encoding, string concatenation, junk code), Windows AMSI
and logging are disabled or bypassed (patching AMSI via PowerShell, turning off
Event Tracing), and any visible windows or prompts are suppressed (using -
WindowStyle Hidden, ShowWindow API, etc.). Fileless execution is leveraged to
great effect — by injecting XWorm into memory or into a legitimate process, the
attackers avoid dropping an executable that could be caught by antivirus.
Additionally, packers or crypters may be used if an executable is written to disk
at all. Some XWorm samples are packed or wrapped in layers of encryption to
stymie analysis. Notably, attackers sometimes deploy decoy techniques for
evasion: Kimsuky, for example, downloaded harmless PDF documents for the
user to open, even as the malware quietly installed in the background. This
misdirects the victim’s attention.

o XWorm itself doesn’t automatically escalate privileges, but attackers using it
have shown adeptness at gaining elevated privileges when needed. If the initial
code execution runs in user context, attackers might attempt a UAC bypass or
use a known local exploit to get admin rights (though specific exploits weren’t
detailed in public sources for these campaigns). In the Kimsuky campaign, the
use of certain PowerShell operations (like disabling logs) implies they had admin
rights or had compromised a high-privilege account. Once they have admin,
XWorm can enable its critical process protection feature, as discussed, to
further cement its position. In some cases, simply convincing the user to run the
initial file (e.g., a fake installer) with admin privileges via a prompt is sufficient -
the trojanized XWorm builder likely required victims (the “script kiddie” hackers)

13|Page
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

to run the builder with admin, unwittingly giving the malware full control over
their systems. Post-compromise, if lateral movement is intended, privilege
escalation to domain admin or similar might be pursued using credential
dumping tools (which could be executed via XWorm’s shell access).

e Attackers deploying X\Worm often persist in a way that suits their campaign’s
needs. Commodity deployments aiming for broad infections might simply use
registry Run keys or Startup shortcuts for persistence (quick and works on most
user machines). More covert operations (espionage-driven) might prefer
scheduled tasks that look legitimate or even WMI Event subscriptions for stealth
persistence (though the latter wasn’t explicitly observed for X\Worm, it’s a known
technique in similar RAT campaigns). In 2025, some campaigns chose short-
term persistence - for example, the CloudSEK-documented attacker had a kill-
switch they later activated, indicating they didn’t intend to stay indefinitely on all
18,000 infected machines. However, APT groups like Kimsuky aim for long-term
stealthy access; thus, their XWorm usage was accompanied by careful cleanup
(like using fileless techniques and likely removing obvious indicators once
access was established). The availability of multiple persistence methods in
XWorm'’s builder means the TTP can vary widely. Investigators have to check
registry, scheduled tasks, services, startup folders, and even odd mechanisms
like Office VBA autoruns or shell autorun keys, since any could be used.

¢ While concrete public examples of X\Worm being used for lateral movement are
sparse (likely because many XWorm deployments are standalone infections on
end-user systems), the potential is certainly there. An attacker with a X\Worm
foothold can leverage native Windows tools to spread. For instance, they might
collect credentials (with the RAT’s keylogger or by stealing password files) and
then use those to authenticate to other machines via RDP or SMB. They could
deploy XWorm to another host by using its file transfer capabilities (upload
command to drop a copy on a network share, etc.) and then use WMI or PsExec
to run it remotely. If the targetis in an Active Directory environment, the attackers
might use commands via X\Worm'’s shell to run PowerShell Remoting or schedule
tasks on other hosts. Although not attributed to a specific APT publicly, itis
reasonable that a determined actor would integrate XWorm into a larger toolkit
for lateral movement — using it to execute network reconnaissance commands
(net view, net use, whoami, etc.), then pivot. One of X\Worm’s internal commands
(StartReport) can accept a list of process names and report which are running;
an imaginative use of this could be to check if remote management services or
tools are present, aiding the lateral movement strategy. In summary, lateral
movement with XWorm is a manual (attacker-driven) process, not an automated
worm, but XWorm gives the attacker all the remote control needed to perform it.

14|Page
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

e Perhaps the most significant TTP category for X\Worm operators is defense
evasion. Beyond the technical evasion measures already described
(obfuscation, anti-AV, anti-sandbox), attackers also practice operational
security. For example, they often rotate infrastructure — the Proofpoint report
noted that the threat actor using Cloudflare tunnels kept modifying aspects of
their chain to improve evasion, and did not stick to one static infrastructure.
XWorm-related campaigns also frequently encrypt or password-protect their
payloads and archives to defeat perimeter scanning. Kimsuky’s campaign used
password-protected RAR archives and staged payloads with benign extensions
(e.g. .txt for PowerShell scripts) to slip past filters. We also see “garbage” code
injection as a technique — some XWorm droppers include large blocks of
irrelevant text or data (for example, a long comment about Social Security
Administration in a WSF file) to confuse analysts and automated scanners. On
the anti-forensics side, X\Worm has a command to self-delete (uninstall) and can
remove plugin traces. When attackers are ready to exit, they can attempt to wipe
out the malware from the host. In the case of the script kiddie botnet, the threat
actor actually used a kill-switch to uninstall X\Worm from many victims
proactively once discovered. This indicates some attackers build in a
contingency to burn their tools if needed. Finally, the use of Telegram for C2 in
that case also doubles as an evasion — blending C2 traffic with normal encrypted
chat traffic and making attribution harder (since commands were sent through a
bot API rather than a traditional C2 panel).

Recent Notable Campaigns Involving X\Worm (2024
2025)

Several high-profile campaigns and threat actor activities in 2024-2025 have involved
XWorm RAT:

¢ Kimsuky APT’s PowerShell Spy Campaign (2025): Kimsuky, a North Korean state-
sponsored group, leveraged XWorm in a sophisticated espionage campaign in
early 2025. The attack used PowerShell-based fileless techniques almost
exclusively. It began with highly obfuscated, Base64-encoded PowerShell loader
scripts that sequentially pulled in additional components. The attackers
downloaded RAR archives and multiple payload binaries (with names like
orwartde.exe, eworvolt.exe, enwtsv.exe) along with further PowerShell scripts
masquerading as text files. These were retrieved from Kimsuky-controlled IPs
(e.g.185.235.128.114,92.119.114.128) that doubled as C2 servers. One notable
tactic was the use of inline C# in PowerShell to call ShowWindow and hide any
console windows, keeping the attack invisible to the user. Kimsuky also

15|Page
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

employed decoy PDF documents — while the victim was distracted with a
harmless PDF opened on their screen, X\Worm components executed in the
background. They utilized ExecutionPolicy Bypass to run their scripts and even
disabled Windows event logging to avoid detection and auditing. Persistence
was achieved via living-off-the-land methods (likely registry or scheduled tasks
created through PowerShell). Ultimately, the campaign focused on data
exfiltration and covert remote access: XWorm was used to maintain access and
siphon off data (such as keystrokes, documents, credentials) back to the C2. The
use of X\Worm by Kimsuky is significant, as it shows even APT groups with
custom toolsets may incorporate commodity RATs to expedite operations or
reduce development effort. Kimsuky’s adoption of X\Worm also underscores that
XWorm had the necessary capabilities (stealth, data theft, control) to satisfy
nation-state espionage requirements.

e Cloudflare Tunnel Campaigns (Mid-2024): Proofpoint tracked an unnamed
cybercriminal threat cluster in 2024 that delivered XWorm at scale using
Cloudflare tunnels for distribution. The actor would send phishing emails
(including in English, French, Spanish, German) with links or attachments that
ultimately led to One-Time Cloudflare Tunnels (via the trycloudflare service) to
host their malware delivery. This innovative approach meant victims connected
to a Cloudflare domain (which appeared benign) that proxied to the attacker’s
server. The infection chains predominantly dropped XWorm by June/July 2024,
though earlier they also delivered other RATs like AsyncRAT, VenomRAT, Remcos,
etc.. The multi-stage chain was complex: victims who clicked the link often got a
.URL file or similar, which fetched a malicious LNK; the LNK ran a script that
downloaded a Python environment and executed Python scripts to load the final
RAT. In many cases a benign PDF decoy was displayed (business-themed, like
invoices or tax documents) to the user while the malware installed. These
campaigns were high-volume — some waves hit thousands of organizations,
indicating a broad targeting typical of financially motivated actors. The use of
Cloudflare’s infrastructure aided their defense evasion and global reach. XWorm,
being a lightweight and powerful payload, was the final stage used to remotely
control infected machines for theft or further monetization (potentially selling
access, etc.). Proofpoint noted the threat actors continually tweaked their TTPs
(for example, increasing obfuscation in later waves, adding more stages) to avoid
detection. This campaign demonstrates how XWorm has been weaponized in
“Malware-as-a-Service” fashion—deployed en masse by cybercrime crews who
value its flexibility.

¢ NullBulge “Hacktivist” Group (2024): NullBulge is a cybercriminal group that
emerged in 2024 masquerading as hacktivists (with anti-Al rhetoric) but engaging
in data theft and ransomware for profit. SentinelOne reported that NullBulge

16|Page
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

targeted Al/gaming communities and even leaked some stolen data from a major
company. Notably, NullBulge’s toolset included XWorm and AsyncRAT as stage-
one implants, which they used to take control of victims’ systems, before
ultimately deploying LockBit ransomware (using a leaked builder) on those
systems. Their distribution methods included poisoning software supply chains —
e.g., inserting malicious code into GitHub repositories, Python libraries, and
software mods that Al developers or gamers would download. These trojanized
components would drop RATs like XWorm on the machines of unsuspecting
users in the Al/art community. Once the RATs phoned home, NullBulge operators
could perform reconnaissance, steal sensitive data (such as browser credentials
and system info via custom Python scripts that worked alongside XWorm), and
then decide whether to deploy ransomware. In effect, X\Worm served as a
backdoor for post-exploitation; it provided access and persistence while the
attackers prepared their final payload (encryption). NullBulge’s use of XWorm
underscores the RAT’s role as a general-purpose tool in multi-stage financially
motivated attacks. It also illustrates X\Worm’s compatibility with various delivery
vectors — even less traditional ones like open-source software tampering.

e Trojanized XWorm Builder Targeting Criminals (Late 2024): In a twist on the
typical scenario, one threat actor created a fake X\Worm builder and released it
to infect other would-be hackers. This was documented by CloudSEK and
publicized in January 2025 after being active in late 2024. The malicious actor
advertised a free or cracked “XWorm RAT Builder” on platforms like GitHub, file-
sharing sites, Telegram channels, YouTube tutorials, etc., appealing to novice
hackers who wanted to use XWorm without paying for it. Instead of generating a
RAT payload, this trojanized builder silently installed XWorm on the user’s own
machine. The result was a botnet of nearly 18,500 infected “script kiddies” (many
in Russia, US, India, etc.) who thought they were setting up a hacking tool, but
became victims themselves. The XWorm variant used in this scheme had some
unique C2 characteristics: it registered bots to a Telegram C2 (with a hardcoded
bot ID/token) and used Telegram channels to issue commands. It was configured
to automatically steal data of interest from the infected wannabe hackers -
Discord tokens, saved browser passwords, IP-based location —as soon as itran.
Interestingly, this X\Worm instance had capabilities tailored to stealing from
hackers: for example, it took screenshots of their desktops (perhaps to gather
any confidential projects or notes) and had a command to encrypt files, possibly
to hold these amateur hackers for ransom or just sabotage them. The actor
behind it eventually triggered a kill-switch that uninstalled the malware from
many victims (likely to avoid too much attention or out of fear of exposure once
CloudSEK got involved). This campaign is notable for its scale and creativity, and
it highlights some static IOCs: the use of /machine_id* command syntaxin

17|Page
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

Telegram (e.g. /12345*keylogger), and the anti-VM checks (the malware halting if
it detected a VM in the registry). It also underlines that there is no honor among
thieves — even threat actors can fall prey to X\Worm when lured by illicit tools.

e Other State-Sponsored Usage: Outside of Kimsuky, there are indications that
Chinese-affiliated threat actors have dabbled in XWorm. The SOCRadar Labs
reported an attack wave where X\Worm was used to exploit the Follina
vulnerability, suggesting a Chinese government-sponsored operation given
Follina’s extensive use by Chinese APTs. While details are sparse, this likely
involved spear-phishing targets with malicious Office documents exploiting CVE-
2022-30190 to load XWorm, thereby establishing persistent espionage access.
Additionally, TA558, a threat group noted in Netskope’s report, allegedly utilized
XWorm in early 2024. TA558 is known for targeting the hospitality and travel
sectors (previously using RATs like AsyncRAT and Loda); their inclusion suggests
XWorm was seen in phishing campaigns aimed at hotels or travel agencies,
possibly for financial fraud or data theft. These examples reinforce that XWorm
has entered the toolset of various APT and cybercrime groups across different
motivations.

Conclusion

The latest variant of XWorm (v6.0) represents an evolution of an already potent malware
family, incorporating new stealth features (like AMSI bypass via CLR patching and
critical process protection) and maintaining a flexible, modular toolkit for attackers.
Technically, X\Worm demonstrates a modern RAT’s playbook: multi-stage fileless
delivery, robust RAT capabilities (spanning espionage to sabotage), and layered
obfuscation and anti-analysis to challenge defenders. In 2024-2025, XWorm has been a
fixture in both targeted APT campaigns and mass-scale criminal operations, a
testament to its effectiveness and ease of use.

For defenders, detecting X\Worm requires vigilance across multiple kill chain phases —
from identifying suspicious script execution and LOLBAS use, to monitoring network
beacons and unusual registry persistence. Indicators such as those outlined (strange
temporary VBS files, repetitive C2 pings, AMSI patch behavior, etc.) can help flag an
XWorm infection. Given XWorm’s ability to run completely in memory and blend with
legitimate processes, a combination of endpoint monitoring (EDR) and network
analytics is necessary for coverage. Furthermore, threat intelligence on XWorm’s
infrastructure (e.g., known C2 domains or Paste sites) and hunting for its known
techniques (like PowerShell disabling AMSI) will improve detection and response.
18|Page

Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

XWorm’s ongoing development and its adoption by disparate threat actors suggest it
will continue to be a pervasive threat. Security teams should ensure they harden
systems against the typical delivery methods (educating users on phishing, patching
exploits like Follina, restricting execution of unknown scripts) and have controls in place
to catch behaviors characteristic of X\Worm’s modus operandi. As this reportillustrates,
XWorm is a prime example of the modern RAT — stealthy, feature-rich, and employed in
creative ways by attackers — and it will require equally creative defense strategies to
counter its latest variants.

19|Page
Cyber Threat Intelligence Briefing - OPTIX
Internal & Limited Customer Scope ONLY

